#Knowledge
  • Info
  • Supplement
  • Priors
  • Items
  • Session Info
  • Codebook
  • OSF

On this page

  • General
  • Hypothesis 1
  • Hypothesis 2
  • Hypothesis 3

Other Formats

  • PDF

Prior Distributions

  • Show All Code
  • Hide All Code

  • View Source

used in the analysis reported in the article #Knowledge: Improving food-related knowledge via seeding implemented as a social media intervention

Published

August 21, 2024

Load packages
# Packages
library(tidyverse) 
library(ggdist)
library(extrafont)
library(distributional)
Define ggplot theme
# Plot colors
clrs <- c("#54AA8F","#00335B",
          "#22A884FF","#414487FF",
          "#496aa2","#e46c0a","#90b6d4")


# ggplot theme
theme_nice <- function(){
  theme_minimal(base_family = "Jost") +  
    theme(plot.title       = element_text(hjust = 0.5,size = 20),
          panel.grid.minor = element_blank(),
          text             = element_text(size  = 20),
          panel.border     = element_rect(colour = "black", linewidth = 0.5, fill = NA),
          axis.title.x     = element_text(margin = unit(c(3, 0, 0, 0), "mm")),
          axis.title.y     = element_text(margin = unit(c(3, 3, 0, 0), "mm"), angle = 90),
          legend.title     = element_text(face = "bold",size=16),
          strip.text       = element_text(face = "bold"),
          legend.position  = "bottom"
    )}

General

Code
dist_1 <- tibble(
  dist      = dist_inverse_gamma(5,1),
  dist_name = "~sigma[r/epsilon] %~% InvGamma(5,1)")

dist_2 <- tibble(
  dist      = "lkjcorr_marginal",
  dist_name = "rho[r] %~% lkj(2)") 

ggplot() +
  stat_halfeye(data = dist_1,aes(xdist = dist)) +
  stat_halfeye(data = dist_2,aes(xdist = dist, arg1 = 3, arg2 = 2)) +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "")

Hypothesis 1

Code
dist_df <- tibble(
  dist      = c(dist_normal(-.75,.50), dist_student_t(3, -.20, .15)),
  dist_name = c("b[0] %~% Normal(-0.75,0.50)",
                "b[1] %~% Student_t(3, -0.20, 0.15)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Metric Knowledge")

Code
dist_df <- tibble(
  dist      = c(dist_normal(0,.50), dist_normal(0.05,.50)),
  dist_name = c("b[0] %~% Normal(0, 0.50)",
                "b[1] %~% Normal(0.05, 0.50)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Mapping Knowledge")

Hypothesis 2

Code
dist_df <- tibble(
  dist      = c(dist_normal(-1,.50), dist_student_t(3, .10, .20)),
  dist_name = c("b[0] %~% Normal(-1.00,0.50)",
                "b[1] %~% Student_t(3, 0.10, 0.20)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Metric Knowledge")

Code
dist_df <- tibble(
  dist      = c(dist_normal(0,.50), dist_normal(0.05,.50)),
  dist_name = c("b[0] %~% Normal(0, 0.50)",
                "b[1] %~% Normal(-0.05, 0.50)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Mapping Knowledge")

Hypothesis 3

Code
dist_df <- tibble(
  dist      = c(dist_normal(-.75,.50), dist_student_t(3, -.20, .15),
                dist_normal(-.20,1.0), dist_student_t(3, .20, .30)),
  dist_name = c("b[0] %~% Normal(-0.75,0.50)",
                "b[match] %~% Student_t(3, -0.20, 0.15)",
                "b[crit] %~% Normal(-.20,1.0)",
                "b[interaction] %~% Student_t(3, .20, .30)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_wrap(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Metric Knowledge")

Code
dist_df <- tibble(
  dist      = c(dist_normal(0,.50), dist_normal(0.05,.50)),
  dist_name = c("b[0]/b[crit]/b[interaction] %~% Normal(0,.50)",
                "b[match] %~% Normal(0.05,.50)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Mapping Knowledge")

Back to top
Source Code
---
title: "Prior Distributions"
subtitle: "used in the analysis reported in the article #Knowledge: Improving food-related knowledge via seeding implemented as a social media intervention"
date: "`r Sys.Date()`"
format: 
  html:
    code-fold: true
    code-copy: true
    code-tools: true
    embed-resources: true
    df-print: kable
    toc: true
    toc-location: right
    fig-format: svg
    page-layout: full
    fig-height: 4
    fig-width:  9
    fig-align: center
  pdf:       
    toc: true
    toc-depth: 2
    fig-height: 4
    fig-width:  9
    fig-align: center
    df-print: kable
    execute:
      echo: false
execute:
  warning: false
  messages: false
editor_options: 
  chunk_output_type: console
---

```{r setup}
#| code-summary: "Load packages"

# Packages
library(tidyverse) 
library(ggdist)
library(extrafont)
library(distributional)
```

```{r ggplot}
#| code-summary: "Define ggplot theme"


# Plot colors
clrs <- c("#54AA8F","#00335B",
          "#22A884FF","#414487FF",
          "#496aa2","#e46c0a","#90b6d4")


# ggplot theme
theme_nice <- function(){
  theme_minimal(base_family = "Jost") +  
    theme(plot.title       = element_text(hjust = 0.5,size = 20),
          panel.grid.minor = element_blank(),
          text             = element_text(size  = 20),
          panel.border     = element_rect(colour = "black", linewidth = 0.5, fill = NA),
          axis.title.x     = element_text(margin = unit(c(3, 0, 0, 0), "mm")),
          axis.title.y     = element_text(margin = unit(c(3, 3, 0, 0), "mm"), angle = 90),
          legend.title     = element_text(face = "bold",size=16),
          strip.text       = element_text(face = "bold"),
          legend.position  = "bottom"
    )}
```


# General 

```{r}
dist_1 <- tibble(
  dist      = dist_inverse_gamma(5,1),
  dist_name = "~sigma[r/epsilon] %~% InvGamma(5,1)")

dist_2 <- tibble(
  dist      = "lkjcorr_marginal",
  dist_name = "rho[r] %~% lkj(2)") 

ggplot() +
  stat_halfeye(data = dist_1,aes(xdist = dist)) +
  stat_halfeye(data = dist_2,aes(xdist = dist, arg1 = 3, arg2 = 2)) +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "")

```

# Hypothesis 1

```{r}
dist_df <- tibble(
  dist      = c(dist_normal(-.75,.50), dist_student_t(3, -.20, .15)),
  dist_name = c("b[0] %~% Normal(-0.75,0.50)",
                "b[1] %~% Student_t(3, -0.20, 0.15)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Metric Knowledge")

```


```{r}
dist_df <- tibble(
  dist      = c(dist_normal(0,.50), dist_normal(0.05,.50)),
  dist_name = c("b[0] %~% Normal(0, 0.50)",
                "b[1] %~% Normal(0.05, 0.50)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Mapping Knowledge")
```


# Hypothesis 2


```{r}
dist_df <- tibble(
  dist      = c(dist_normal(-1,.50), dist_student_t(3, .10, .20)),
  dist_name = c("b[0] %~% Normal(-1.00,0.50)",
                "b[1] %~% Student_t(3, 0.10, 0.20)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Metric Knowledge")

```


```{r}
dist_df <- tibble(
  dist      = c(dist_normal(0,.50), dist_normal(0.05,.50)),
  dist_name = c("b[0] %~% Normal(0, 0.50)",
                "b[1] %~% Normal(-0.05, 0.50)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Mapping Knowledge")
```

# Hypothesis 3

```{r}
#| fig-height: 8
#| fig-width:  9

dist_df <- tibble(
  dist      = c(dist_normal(-.75,.50), dist_student_t(3, -.20, .15),
                dist_normal(-.20,1.0), dist_student_t(3, .20, .30)),
  dist_name = c("b[0] %~% Normal(-0.75,0.50)",
                "b[match] %~% Student_t(3, -0.20, 0.15)",
                "b[crit] %~% Normal(-.20,1.0)",
                "b[interaction] %~% Student_t(3, .20, .30)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_wrap(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Metric Knowledge")

```


```{r}
dist_df <- tibble(
  dist      = c(dist_normal(0,.50), dist_normal(0.05,.50)),
  dist_name = c("b[0]/b[crit]/b[interaction] %~% Normal(0,.50)",
                "b[match] %~% Normal(0.05,.50)")
)


ggplot(dist_df,aes(xdist = dist)) +
  stat_halfeye() +
  facet_grid(.~dist_name, scales="free", labeller = label_parsed) +
  theme_nice() +
  labs(y = "", title = "Mapping Knowledge")
```
    

Content 2024 by David Izydorczyk
All content licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0)

 

Made with and Quarto
View the source at GitHub